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A MESSAGE FROM THE MANAGER: 
ADVANCED BATTERY MATERIALS RESEARCH  

AND BATTERY500 CONSORTIUM  
  

This quarter, the Vehicle Technologies Office (VTO) introduces 21 new efforts to develop next-generation 

batteries that can outperform present lithium-ion batteries. A list of the new projects is provided in the 

Table below. Projects conducted by the national laboratories and academia that focus on accelerating solid-state 
electrolyte technology will be managed by Dr. Simon Thompson. Ms. Haiyan Croft will assist in managing 

university/industry efforts to develop lithium-sulfur and lithium-air batteries. The progress of these new projects 

will be reported within this and future BMR quarterly reports. 

Institution Title Principal Investigator 

Argonne National Laboratory 
Multifunctional Gradient Coatings for Scalable, High-Energy-Density 
Sulfide-Based Solid-State Batteries  

Justin Connell 

Argonne National Laboratory 
Development of All-Solid-State Battery Using Anti-Perovskite 
Electrolytes 

Zonghai Chen 

Argonne National Laboratory Electrolytes for High-Energy, All-Solid-State, Lithium-Metal Batteries Guiliang Xu 

Argonne National Laboratory 
Synthesis of Composite Electrolytes with Integrated  
Interface Design 

Sanja Tepavcevic 

Brookhaven National 
Laboratory 

Inorganic-Polymer-Composite Electrolyte with Architecture Design 
for Lithium-Metal Solid-State Batteries 

Enyuan Hu 

Lawrence Livermore  
National Laboratory 

Three-Dimensional Printing of All-Solid-State Lithium Batteries Jianchao Ye 

Lawrence Livermore  
National Laboratory 

Integrated Multiscale Model for Design of Robust,  
Three-Dimensional, Solid-State Lithium Batteries 

Brandon Wood 

National Renewable  
Energy Laboratory 

Low-Pressure All-Solid-State Cells Anthony Burrell 

Oak Ridge National Laboratory Precision Control of the Lithium Surface for Solid-State Batteries Andrew Westover 

Oak Ridge National Laboratory 
Substituted Argyrodite Solid Electrolytes and High-Capacity 
Conversion Cathodes for All-Solid-State Batteries 

Jagjit Nanda 

Oak Ridge National Laboratory 
Lithium Halide-Based Superionic Solid Electrolytes and High-Voltage 
Cathode Interface 

Jagjit Nanda 

Oak Ridge National Laboratory 
Polymer Electrolytes for Stable, Low-Impedance, Solid-State Battery 
Interfaces 

X. Chelsea Chen 

Pacific Northwest National 
Laboratory 

Stable Solid-State Electrolyte and Interface for High-Energy  
All-Solid-State Lithium-Sulfur Battery 

Dongping Lu 

Pennsylvania State University 
Development of Li-S Battery Cells with High Energy Density and 
Long Cycling Life 

Donghai Wang 

Stanford University 
Thioborate Solid-State Electrolytes for Practical All-Solid-State 
Batteries 

Yi Cui 

University of California, 
Berkeley 

Polyester-Based Block Copolymer Electrolytes for Lithium-Metal 
Batteries 

Nitash Balsara 

University of California, 
Berkeley 

Ion Conductive High Li+ Transference Number Polymer Composites 
for Solid-State Batteries 

Bryan McCloskey 

University of California, 
Berkeley 

Solid-State Batteries with Long Cycle Life and High Energy Density 
through Materials Design and Integration 

Gerbrand Ceder 

University of California,  
San Diego 

Strategies to Enable Lean Electrolytes for High Loading and Stable 
Lithium-Sulfur Batteries  

Y. Shirley Meng 

University of Illinois, 
Chicago 

Development of a High-Rate Lithium-Air Battery Using a Gaseous 
CO2 Reactant 

Amin Salehi-Khojin 

University of Pittsburg 
New Engineering Concepts to High-Energy-Density Lithium-Sulfur 
Batteries 

Prashant Kumta 
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A few notable achievements from BMR investigators during October 1, 2021, through December 31, 2021, are 

summarized below: 

ǐ The team led by Jeff Sakamoto at the University of Michigan investigated the tradeoffs between lithium 

thickness (or capacity) and current density during lithium stripping when using thin Li-metal anodes 

between 5-20 µm with 17-µm thick Li7La3Zr2O12 (LLZO) electrolytes. They demonstrated that higher 
current densities and thinner lithium films increase the instability in lithium stripping. These results have 

significant general implications for using thin Li-metal anodes with oxide-based solid electrolytes.  

ǐ Deyang Qu and the team at the University of Wisconsin, Milwaukee, successfully made thin halide-based 
solid-electrolyte separators less than 50-µm thick, leveraging small amounts of polytetrafluoroethylene 

(PTFE) binders, and successfully laminated them to 80-µm thick cathodes. The electrolyte was flexible and 

achieved an ionic conductivity of ~ 1 mS/cm.  

ǐ The University of Illinois, Chicago, (Amin Salehi-Khojin group) explored a Li-air battery based on a carbon 

dioxide reactant.  They discovered a novel transition metal dichalcogenide alloy structure that serves as a 

cathode catalyst and a bi-functional redox mediator that works in synergy with ionic-liquid-based 
electrolyte that promotes high-rate battery operation.  The battery is capable of operating under 0.3 mA/cm2 

and high capacities of 0.3 mAh/cm2 (corresponding to 3000 mAh/g) up to 100 cycles.   

ǐ The Argonne National Laboratory team (Chris Johnson and Khalil Amine) combined in situ synchrotron-

based X-ray diffraction and X-ray absorption spectroscopy to reveal the capacity fade of O3 sodium layered 

oxide NaNi0.4Mn0.4Co0.2O2 cathode at both low (2.0-3.8 V) and high (2.0-4.4 V) voltage. Their results show 

that charging voltage limit does not play a dominant role in triggering capacity fade of O3 sodium layered 

cathodes with native lattice strain. 

ǐ Marca Doeffôs team at Lawrence Berkeley National Laboratory improved an ion-exchange process for 
making a lepidocrocite-structured Mg0.37Ti1.815O4 phase. The replacement of interlayer monovalent cations 

with divalent magnesium increases the number of available sites for sodium insertion during 

electrochemical sodiation. This electrode was found to cycle better than the sodiated version. 

ǐ The Brookhaven National Laboratory team (Xiao-Qing Yang and Enyuan Hu) carried out structure 

evolution studies of NaMnFeCoNiO2, using synchrotron-based X-ray diffraction, and high-angle annular 

dark field ï scanning transmission electron microscopy. They found that after the first-charge process, the 
atomic structure of NaMnFeCoNiO2 is partially transformed from O3-type to P3-type, resulting in a mixture 

of O3 and P3 structure in this high-energy-density cathode material after the first cycle. 

The Battery500 Consortium, led by Pacific Northwest National Laboratory, was awarded a Phase II 

co-operative agreement. This effort is one of the largest battery research programs in the world and includes 
members from Brookhaven National Laboratory, Idaho National Laboratory, SLAC National Accelerator 

Laboratory, Binghamton University (State University of New York), Stanford University, University of 

California at San Diego, and the University of Washington. Scientists from Texas A&M University, the 
Pennsylvania State University, University of Maryland, and General Motors will also be supporting the effort.  

The aim of the program remains the same as Phase Iðdemonstration of a cell that delivers triple the specific 

energy (500 watt-hours per kilogram, compared to the 170-200 watt-hours) of todayôs electric vehicle batteries 
and the ability to achieve 1,000 cycles. To accomplish this aggressive goal, the program is divided into three 

key areas (Materials and Interfaces, Electrode Architecture, and Cell Fabrication, Testing, and Diagnosis) and 

a cross-cutting effort to ensure a rapid cell-level integration of any new advances in materials and components. 
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A few notable achievements from the Battery500 Team this quarter include:  

ǐ Arumugam Manthiramôs Team from the University of Texas, Austin, designed, synthesized, and studied a 
novel, cobalt- and manganese-free, high-nickel cathode, (LiNi0.93Al 0.05Ti0.01Mg0.01O2). The material 

displayed the highest capacity retention, with 82% after 800 cycles, compared to 60% for 

LiNi 0.90Mn0.05Co0.05O2 and 52% for LiNi0.94Co0.06O2. The team also demonstrated that a simple manganese 

salt additive can significantly improve Li-metal plating morphology. 

ǐ  The Xiao-Qing Yang and Enyuan Hu team at Brookhaven National Laboratory utilized an X-ray pair 

distribution function technique combined with molecular dynamics simulations to probe the Li-solvation 
structures in liquid electrolytes. It was found that in high concentration electrolyte, the solvation structure 

promotes the anion reduction for solid electrolyte interphase (SEI) formation, while the low concentration 

electrolyte promotes solvent reduction, showing that better lithium metal protection is obtained using a high 

concentration electrolyte. 

ǐ Perla Balbuenaôs team at Texas A&M University applied a new ab initio simulation approach to evaluate 

barriers for lithium cation transport and deposition with simultaneous SEI formation on the lithium anode. 
They showed in high concentration electrolyte that a significant increase in the energy barriers for cation 

diffusion and the ion complexes trapped in the high concentration electrolyte can slow down their surface 

deposition, enabling a thick and compact SEI to be built through anion decomposition, whereas the barriers 

are significantly lower in localized high concentration electrolytes while keeping an anion-dominated SEI. 

On a final note, the VTO will hold its Annual Merit and Peer Evaluation meeting from June 21 to 23, 2022.  

This hybrid event will accommodate both in-person and virtual attendance.  The in-person meeting will be at 
the Washington Hilton hotel in Washington, D. C. Additional information may be found online 

(www.energy.gov/eere/vehicles/annual-merit-review-agenda).  I hope to see you there. 

 

On behalf of the VTO team, 

 

Tien Q. Duong  
 

Tien Q. Duong 

Manager, Advanced Battery Materials Research Program & Battery500 Consortium 

Batteries & Electrification R&D 

Energy Efficiency and Renewable Energy 

U.S. Department of Energy 
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TASK 1 ð Solid-State Electrolytes 
Team Lead: Andrew Westover, Oak Ridge National Laboratory 

 

Summary and Highlights 

The U. S. Department of Energy (DOE) has made a clear goal of realizing next-generation batteries with an 

energy density greater than 500 Wh/kg, that can cycle for more than 300 cycles, and that can demonstrate 

high-rate capabilities. To achieve this step-change in battery performance, a significant change in the battery 
chemistry and cell design is needed. This task focuses on developing solid-state electrolytes (SSEs) that enable 

Li -metal anodes and high-energy cathodes to achieve just such a step change. This task includes 12 projects 

centered in DOE national laboratories and 13 in companies and universities. These projects span the gamut of 

different materials for SSEs, interfacial design strategies to enable Li-metal anodes, and high-energy cathodes. 

Together, they can significantly impact the successful realization of the DOE battery performance targets.  

In summary, the projects focus on research and development of a range of solid electrolytes (SEs), including:  

ǐ sulfur ceramics and glasses (1.1 ï 1.9),  

ǐ oxide ceramics (1.10 ï 1.13), 

ǐ halides and anti-perovskites (1.13 ï 1.15), 

ǐ polymers (1.16 ï 1.18), 

ǐ composites (1.19 ï 1.22),  

ǐ multiple electrolytes / full cells (1.23 ï 1.24), and 

ǐ Li -metal ï SSE interface (1.25). 

These projects encompass common research themes essential to achieving high-energy solid-state batteries 

(SSBs), including:  

ǐ engineering high ionic conductivity > 1 mS/cm, 

ǐ developing electrolytes that are stable with various high-energy cathodes, including layered oxide cathodes, 

high-voltage spinels, and conversion cathodes such as sulfur and FeF3, 

ǐ developing electrolytes or interfaces that are stable with lithium metal,  

ǐ developing thin SEs 20-100 µm thick, and  

ǐ understanding the mechanics of SSBs.  

Highlights 

ǐ The team led by J. Sakamoto at the University of Michigan (UM) investigated the tradeoffs between lithium 

thickness (or capacity) and current density during lithium stripping when using thin Li-metal anodes 

between 5-20 µm with 17-µm thick Li 7La3Zr2O12 (LLZO) electrolytes. They demonstrated that higher 
current densities and thinner lithium films increase the instability in lithium stripping. These results have 

significant general implications for using thin Li-metal anodes with oxide-based SEs.  

ǐ D. Qu and the team at the University of Wisconsin, Milwaukee (UWM) successfully made thin halide-based 
SE separators less than 50-µm thick, leveraging small amounts of polytetrafluoroethylene (PTFE) binders, 

and successfully laminated them to 80-µm thick cathodes. The electrolyte was flexible and achieved an 

ionic conductivity of ~ 1 mS/cm.  
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ǐ N. Balsara and the Lawrence Berkeley National Laboratory (LBNL) team successfully synthesized novel 

polyester-based polymer electrolytes (PEs) as one of the key building blocks for a new type of block 

co-polymer electrolyte. 
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Project Objective. This task seeks to develop scalable approaches to synthesize gradient-coated sulfide 
SSE particles to improve their air/moisture tolerance and provide chemical compatibility with Li-metal anodes 

and high-voltage oxide cathodes. The compositional gradient is targeted to provide the additional advantage of 

lower interfacial impedance due to mitigation of detrimental, spontaneously formed space charge layers and/or 

elemental interdiffusion at the sulfide SSE-oxide cathode interface. 

Impact. Development of coated SSE materials that provide stable, low-impedance interfaces with both anode 

and cathode will enable high-energy-density, all-solid-state full cells with improved cyclability at high rates 

relative to benchmarked, uncoated materials. Coating the SSE directly will also remove the need for separate 
anode and cathode coatings, significantly reducing the cost and complexity associated with materials processing 

while maintaining compatibility with roll-to-roll manufacturing. 

Approach. The team will leverage a surface science-based, integrated experimental-theoretical approach to 

synthesize gradient-coated SSE powders, characterize the structure, composition, and intrinsic stability of 

coated SSEs in contact with reactive electrodes, and directly correlate this understanding with their 
electrochemical performance. Gradient coatings will be developed using atomic layer deposition (ALD) and/or 

physical mixing methodologies viable at the kg/ton scale, ensuring technical and commercial relevance of the 

final, optimized coating process. Well characterized, model surfaces will be used to understand the electronic 
structure and chemical stability of the gradient coatings as a function of gradient composition and thickness to 

understand the effect of space-charge layers and chemical reactions on interface resistance. They will accelerate 

development and optimization of the gradient coatings for improved performance in full cells by establishing a 

tight feedback loop between materials synthesis and experimental/computational characterization of interfacial 

(electro)chemistry. 

Out-Year Goals. The out-year goals are to demonstrate high-energy-density, low-impedance full cells 

assembled from fully optimized, gradient-coated SSE powders, high-energy-density cathodes, and Li-metal 

anodes. The team will also significantly improve the ability to manipulate the formation of space-charge layers 
at sulfide SSE-oxide cathode interfaces based on mechanistic understanding of the extent to which they can be 

mitigated to reduce overall cell impedance. 

Collaborations. This project funds work within multiple divisions and directorates at Argonne National 

Laboratory (ANL) and includes in-kind contributions from Solid Power. 

Milestones 

1. Baseline Li||Li symmetric cell testing and characterization of uncoated argyrodite SSEs. (Q2, FY 2022; 

In progress) 

2. Chemical stability characterization of gradient coatings for argyrodite SSEs. (Q3, FY 2022). 

3. Computational assessment of electronic structure of candidate gradient coating chemistries. (Q4, FY 2022) 

4. Identification of multiple gradient coating chemistries that deliver > 50% reduction in weight gain during 

humidified air exposure. (Q1, FY 2023) 

  

Task 1.1 ï Multifunctional Gradient Coatings for Scalable, High-Energy-Density Sulfide-Based  
Solid-State Batteries 

(Justin Connell, Argonne National Laboratory) 
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Progress Report 

Progress for this new project will be reported next quarter. 

 

 

Patents/Publications/Presentations 

The project has no patents, publications, or presentations to report this quarter.  
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Project Objective. The project objective is to develop ultra-thin (< 30 mm) sulfide SSEs with high 

room-temperature ionic conductivity (> 0.01 S/cm) and high chemical/mechanical/electrochemical stability, 

and further integrate them with lithium metal and high-loading selenium-doped sulfur (Se-S) cathodes through 

rational interface engineering to develop all-solid-state Li-S batteries (ASSLSBs) with high energy density and 

long cycle life. 

Impact. The project is related to development and mass production of high-performance sulfide SSEs for 

high-energy all-solid-state Li -S pouch cells. The success of the proposed project in meeting or exceeding 

DOE targets can promote the practical implementation of Li-S battery in electric vehicles (EVs), electric 

aviation, and grid energy storage, and hence significantly reduce oil dependence and emissions of carbon 
dioxide. It can also mitigate the domestic supply challenge on the critical raw battery materials (for example, 

nickel and cobalt). 

Approach.  The thickness and chemical/interfacial stability of sulfide SSEs are the critical challenges for 

energy density, cycle life, and mass production of all-solid-state Li-S pouch cells. The team will combine 
innovative material design, electrode architecture fabrication, and advanced diagnostics tools to address these 

challenges. Specifically, the approaches include: (1) improving air stability and ionic conductivity of sulfides 

through synthetic control and cation/anion doping, (2) fabrication of flexible thick SeS cathode supported thin 

sulfide electrolytes to ensure intimate contact and increase the energy density, (3) stabilizing Li-metal/sulfide 
electrolytes interface via interlayer and additives design to increase the critical current density (CCD) of lithium 

stripping/platting, (4) advanced Li-S pouch cell design, and (5) multiscale advanced diagnostic such as in situ 

X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), X-ray imaging, and focused ion beam ï 

scanning electron microscopy (FIB-SEM) to understand and overcome the degradation pathways. 

Out-Year Goals. The out-year goals are to scale up the optimal sulfide SSEs to develop Ah-level all-solid-

state Li-S pouch cells that can reach a cell energy density of > 500 Wh/kg with 80% capacity retention for 

> 300 cycles at a current density of > 1 mA/cm2. 

Collaborations. The team is closely collaborating with top scientists at University of Chicago (X. Huang) and 

at Advanced Photon Source (C. Sun, W. Xu, D. Zhang, and J. Deng) and Center for Nanoscale Materials (Y. Liu 
and M. Chan) of ANL for in situ diagnostics on the synthesis and aging mechanism of the proposed 

sulfide SSEs.  

Milestones 

1. Set up a dedicated lab for synthesis, processing, and characterization of sulfide SSEs. (Q1, FY 2022; 

In progress) 

2. Revealing the formation and degradation mechanism of sulfide SSE. (Q2, FY 2022; In progress) 

3. Composition tuning of sulfide SSE. (Q3, FY 2022; In progress) 

4. Development of doped sulfide SSE with high room-temperature ionic conductivity (> 1 mS/cm) and air 

stability. (Q4, FY 2022; In progress) 

  

Task 1.2 ï Electrolytes for High-Energy, All-Solid-State, Lithium-Metal Batteries 

(Guiliang Xu, Argonne National Laboratory) 
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Progress Report 

Progress for this new project will be reported next quarter. 

 

 

Patents/Publications/Presentations 

The project has no patents, publications, or presentations to report this quarter.  
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Project Objective. This project aims to develop novel lithium thioborates (lithium-boron-sulfur, LBS) as a new 

class of SSEs to realize high-performance all-solid-state batteries (ASSBs), with a particular focus on 

addressing the technical challenges in electrolyte synthesis, cell integration, failure diagnostics, and scale-up. 
The approach will be technologically transformative to the current solutions for ASSB development. For the 

final deliverables, ASSBs with the ability to reach an energy density of 500 Wh/kg and maintain 80% capacity 

for at least 300 cycles will be demonstrated.  

Impact. The project approaches provide new directions toward developing high-conductivity and 

electrochemically stable sulfur-based electrolytes for ASSBs. Such high-performance electrolytes can enable 

the practical realization of ASSBs with a high energy density and improved safety. 

Approach. The long-term project has a multi-step approach toward integration of LBS with high-voltage 

cathodes, with steps 1-3 as the focus for this year: 

1. Fabricate undoped LBS powders using an all-solid-state synthesis method to achieve high ionic 

conductivity, low electronic conductivity, and a wide operational voltage window. 

2. Integrate LBS SSEs into symmetric Li/LBS/Li cells and into full batteries using high-voltage 

cathodes including lithium Ni-Mn-Co (NMC) oxide.  

3. Study atomic, particle, and cell-scale Li-metal-SSE interface development and dendrite growth 

mechanisms in SSEs using advanced characterization tools. Use knowledge to better develop SSEs 

and modify interfaces for stable cycling in full cells. 

4. Fabricate doped LBS powders and develop particle/surface modifications to increase ionic 

conductivity as well as stability in full batteries and in air for glovebox-free synthesis. 

5. Use density functional theory (DFT) to guide development of new doped LBS materials and to 

explore interactions at solid-solid interfaces. 

Out-Year Goals. In the following year, the team will develop solid-state reaction methods to synthesize 
undoped LBS powders and construct Li/LBS/Li symmetric cells to test the electrochemical performance of 

synthesized LBS. Meanwhile, the team will utilize advanced characterization tools [for example, cryogenic 

electron microscopy (cryo-EM), X-ray computed tomography (CT), etc.] to resolve the nanostructure of Li/LBS 

interphase and investigate the electrochemical stability between LBS and lithium metal.  

Collaborations. The Y. Cui group is collaborating with W. Chuehôs group (advanced characterization) and 
E. Reedôs group (crystal structure computation) at Stanford as well as with Y. Liu (advanced characterization) 

at SLAC National Accelerator Laboratory (SLAC).  

Milestones 

1. Develop solid-state reaction methods to synthesize undoped LBS powders with high ionic conductivity. 

(Q1, FY 2022; In progress) 

2. Construct Li/LBS/Li symmetric cells for electrochemical characterizations. (Q2, FY 2022; In progress) 

3. Study the evolution of Li/LBS interphase. (Q3, FY 2022) 

4. Resolve the nanostructure of Li/LBS interphase using advanced characterizations (for example, cryo-EM, 

X-ray CT, etc.). Achieve ionic conductivity of LBS SSE of 1.0 × 10-3 S cm-1. (Q4, FY 2022)   

Task 1.3 ï Thioborate Solid-State Electrolytes for Practical All-Solid-State Batteries 
(Yi Cui, Stanford University) 
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Progress Report 

In collaboration with the E. Reed group at Stanford, the team discovered that the theoretical ionic conductivity 

of LBS SSEs can reach 74 mS cm-1. Motivated by these calculations and by the possibility of discovering a new 
class of SSEs made from earth-abundant elements, they are working to develop LBS SSEs with high ionic 

conductivity and high stability for application in full batteries. First, they worked to synthesize high-purity 

Li 10B10S20 SSE (Figure 1). Currently, they are working to synthesize high-purity Li5B7S13 SSE. By altering the 

ratio of starting materials, high-temperature sintering procedure, and total length of sintering, they have been 
able to synthesize a mixed-phase Li5B7S13/Li 10B10S20 SSE. Another important task of this project is to increase 

the yield of the reaction to grams scale. Using a new reactor setup, they have increased the quantity that can be 

produced in one reaction to > 10 grams. 

 
Figure 1. (a) The crystal structure of Li10B10S20. (b) Schematic illustration of the synthesis of the Li10B10S20 powder. (c) X-ray diffraction 
(XRD) data fitting of Li10B10S20. Experimental data are shown in blue line; the red line denotes the calculated pattern; the difference 
profile is shown in grey; and calculated positions of the XRD peaks are shown as vertical ticks. (d) Photo image of Li10B10S20 powder. 
(e-f) Photo image of Li10B10S20 pellet from (e) top view and (f) side view. 

 
 

Patents/Publications/Presentations 

The project has no patents, publications, or presentations to report this quarter.  
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Project Objective. The project aims at synthesis and fabrication of Li-ion conducting argyrodite SEs with 

nominal composition Li6PS5X, where X Ə chlorine and/or bromine. The team will combine electrochemical 
impedance spectroscopy (EIS) with complementary in situ spectroscopy and microscopy to identify buried 

interfacial side-reaction products and quantify the voltage losses associated with these side reactions. 

Specifically, they plan to investigate the interfacial reaction between various Li6PS5X SE and Li-ion cathodes 
belonging to different structural families [transition metal (TM)-based sulfides and fluorides (for example, FeS2 

and FeF2) and high-voltage layered oxides (for example, LiNi 0.8Mn0.1Co0.1O2, NMC-811).  New dopants such 

as niobium and partial substitution of sulfur with oxygen will be explored to improve stability of argyrodite SEs 

against lithium metal and high-voltage cathodes.   

Impact. The proposed work addresses key technical barriers to achieve Li-metal SSBs with energy densities of 
> 450 Wh/kg and 1,000 Wh/L, which are critical for next-generation EVs. Integrating new sulfide SEs prepared 

through scalable, low-cost solvent-mediated routes with high capacity, earth abundant conversion cathodes (for 

example, sulfur, FeF3, and FeS2) will lower SSB cost to $80/kWh and eliminate use of critical materials such 

as cobalt and nickel. 

Approach. Scalable solution-based processing routes will be developed to produce freestanding sulfide/binder 

solid-state separators with thicknesses < 50 µm and area specific resistance (ASR) < 50 ɋ cm2. These ultra-thin 

separators will be integrated with Li-metal anodes and high areal capacity conversion cathodes (for example, 

sulfur, FeS2, and FeF3) to demonstrate lab-scale prototype SSBs. As a cross-cut activity, various in situ and 
ex situ passivation methods will be combined with enabling characterization techniques to facilitate 

Li + transport across electrode/SE interfaces. 

Out-Year Goals. Optimize SSB performance by: (1) varying cathode composition, particle size, and porosity, 

(2) applying halide-rich and carbon layers at electrode/electrolyte interfaces, and (3) evaluating how stack 
pressure (0.1-10 MPa) and temperature (25-75°C) impact performance. Targets: room-temperature cycling with 

areal capacities > 5 mAh/cm2, current densities > 2 mA/cm2, stack pressures < 1 MPa, and < 20% capacity fade 

over 300 cycles. 

Collaborations.  D. Hallinan and his group are funded collaborators to develop the binder system for sulfide 

SEs and evaluate compatibility with cathode and Li-metal. P. Jena from Virginia Commonwealth University 
will be an unfunded collaborator on DFT modeling of bulk Li-ion transport and ab initio molecular dynamics 

(AIMD) at SE interfaces.  

Milestones 

1. Produce Li6PS5X (X = Cl, Br, and/or I) SEs using solvent-mediated routes with ionic conductivity 

Ó 1 × 10-3 S/cm-1 at room temperature. (Q1, FY 2022) 

2. Optimize synthesis and annealing conditions to obtain phase-pure SE Li6PS5X powders. Evaluate structure 

using XRD, Raman, and neutron scattering. (Q2, FY 2022) 

3. Compare the structure and Li+ conductivity of Li6PS5X prepared through solvent-mediated versus 

mechano-chemical and solid-state routes. (Q3, FY 2022) 

4. Integrate SSB using Li6PS5X SE with a working cathode and thin Li-metal anode for testing and capacity 

optimization. (Q4, FY 2022)  

Task 1.4 ï Substituted Argyrodite Solid Electrolytes and High-Capacity Conversion Cathodes for  

All-Solid-State Batteries 
(Jagjit Nanda, Oak Ridge National Laboratory) 
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Progress Report 

Progress for this new project will be reported next quarter. 

 

 

Patents/Publications/Presentations 

The project has no patents, publications, or presentations to report this quarter.  
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Project Objective. The project objective is to address material and interfacial barriers of sulfide-based solid-

state electrolyte (S-SSE) for deep cycling of Li-metal anode in all-solid-state lithium batteries (ASSLBs). All 
proposed work will be focused on development of highly conductive sulfide Li+ conductors with extremely low 

Li/SSE interfacial resistance and ultra-thin multifunctional interlayer to enable deep and stable lithium cycling. 

The SEs and interlayer assembly achieved in the project will be tested at practical conditions and validated in 

realistic Li-S pouch cells.  

Impact. ASSLBs have the potential to achieve higher energy and power densities, extending the range of EVs 
and reducing charging time simultaneously. The success of the project would advance the research and 

deployment of superionic SEs and protective Li-compatible interlayers to support the DOE Vehicle 

Technologies Office (VTO) target of developing next-generation ASSLBs for EVs, accelerating market 

acceptance of long-range EVs required by the EV Everywhere Grand Challenge.  

Approach. The project proposes the following approach: (1) to develop Li-compatible superionic sulfide-based 

SSEs and effective coating approaches, (2) to stabilize Li/SSE interface by employing a multifunctional 

interlayer, (3) to enable robust Li+/e- mixed conduction network for a high-loading sulfur cathode, (4) to develop 

dry processing for SSE film, cathode, and interlayer fabrication, and (5) to advance the mechanism study of the 

sulfur cathode, lithium anode, and interfaces by multiscale characterization and multiscale modeling. 

Out-Year Goals. This project has the following out-year goals: 

ǐ Development of Li-metal-compatible S-SSEs with Li/SSE interfacial resistance < 5 Ýcm2 and 

room-temperature Li+ conductivity > 5 mS/cm.  

ǐ Operation of lithium anode at CCD > 1 mA/cm2, and lithium cycling for at least 400 cycles. 

ǐ Ultra-thin multifunctional interlayer to enable deep lithium cycling > 4 mAh/cm2 to couple high 

areal-capacity cathode. 

ǐ Dry processing of an SSE/interlayer assembly with an overall ionic conductivity > 1 mS/cm.  

ǐ Validation of the S-SSE, high-areal capacity cathode, and bilayer assembly in a realistic Li-S pouch cell. 

Collaborations. This project engages in collaboration with the following: D. Y. Qu (UWM), C. M. Wang 

(Pacific Northwest National Laboratory, PNNL), H. Du (Ampcera Inc.), J. Bao (PNNL), and Z. Liu (Thermo 

Fisher Scientific). 

Milestones 

1. Synthesis of lithium halides doped S-SSE to realize low Li/SSE areal interfacial resistance (AIR < 5 Ýcm2) 

and high room-temperature Li + conductivity (ů ~ 6 mS/cm). (Q1, FY 2022; In progress) 

2. Development of surface treatment approach to improve moisture stability of S-SSE. (Q2, FY 2022) 

3. Optimization, characterization, and simulation of Li/SSE interface and its dynamics. (Q3, FY 2022) 

4. Optimization of external pressure to improve CCD (> 1 mA/cm2) and Li/SSE/Li cycle life (> 400 cycles). 

(Q4, FY 2022) 

  

Task 1.5 ï Stable Solid-State Electrolyte and Interface for High-Energy, All-Solid-State,  
Lithium-Sulfur Battery 
(Dongping Lu, Pacific Northwest National Laboratory) 
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Progress Report 

Progress for this new project will be reported next quarter. 

 

 

Patents/Publications/Presentations 

The project has no patents, publications, or presentations to report this quarter.  
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Project Objective. The project objective is to develop new Li +-conducting mixed oxy-sulfide nitride (MOSN) 
glassy solid electrolytes (GSEs) that are impermeable to lithium dendrites, have high conductivities, are scalable 

through low-cost glass manufacturing, are chemically and electrochemically stable, and will enable low-cost, 

high-energy-density solid-state lithium batteries (SSLBs). The SSLBs constructed from these new GSEs will 

meet and exceed all program objectives: usable specific energy @ C/3 Ó 350 Wh/kg, calendar life of 15 years, 

cycle life (C/3 deep discharge with < 20% energy fade) of 1000, and cost Ò $100/kWh. 

Project Impact. This project will enable the team to demonstrate the following: (1) thin MOSN GSE films 

yield superior performance in a much safer, lower-cost, and Li -dendrite impenetrable form, and (2) high rate 

and long cycle life can be achieved in SSLBs using thin-film MOSN GSEs. The new GSEs in SSLBs are 
anticipated to increase energy density (anode basis) from ~ 300 mAh/g to ~ 4,000 mAh/g, enabling replacement 

of internal combustion engines in both light-duty and heavy-duty vehicles. Each 20% reduction in the 

~ 1.6 billion liters of gasoline used per day in the United States would reduce CO2 emissions by ~ 4 billion kg 

or 2 × 1012 l of CO2 per day. The team will also increase scientific and engineering knowledge of thin-film 

GSEs in SSLBs.  

Approach. The MOSN mixed glass former (MGF) glasses used for the GSEs in this project were developed in 

previous work to have the necessary thermal stability and high ionic conductivity for successful use as a 

drawn-film electrolyte.  In this project, the glass chemistry will be tuned for even more desirable properties, by 

investigating structure-property relationships and testing variations in glass chemistry.  

Out-Year Goals. Work will progress toward developing a glass capable of being drawn to 100-µm thickness, 

while having high conductivity and electrochemical stability and good cycling ability. 

Collaborations. There are no active collaborations this quarter. 

Milestones 

1. Accomplish: Large MOSN MGF GSE preforms (10 cm x 0.5 cm x 30 cm) demonstrate < 1 vol% 

crystallization at 90°C above the glass transition temperature. (Q1, FY 2022; Completed) 

2. Accomplish: Optimize draw conditions for MOSN GSE to achieve 5 m × 5 cm × < 50 µm thin films. 

(Q2, FY 2022; In progress) 

3. Accomplish: Fabricate MOSN MGF Li|GSE|Li cells in intermediate area format, ~ 2 cm2. (Q3, FY 2022; 

In progress) 

4. Go/No-Go Decision: Fabricate MOSN MGF GSE cells in large format ~ 5 cm2. Cells achieve targeted 
performance metrics. Analysis indicates technical approach capable of achieving performance targets. (Q4, 

FY 2022; In progress)  

  

Task 1.6 ï Development of Thin, Robust, Lithium-Impenetrable, High-Conductivity, Electrochemically 
Stable, Scalable, and Low-Cost Glassy Solid Electrolytes for Solid-State Lithium Batteries  
(Steve Martin, Iowa State University of Science and Technology) 
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Progress Report 

 

Task 1. Development of Optimized High Li
+
 Conductivity MOSN MGF GSEs 

Initiate Development of Preforms of MOSN MGF GSEs that do not Crystallize 

This quarter, efforts continued to further develop and optimize compositions of the teamôs MOSN MGF GSEs. 
Previous efforts on the ISU-9 series continued, with minor setbacks. Between different batches of the 

ISU-9,  z = 1.0 glass, a difference in working range was found of more than 70°C. From Raman spectroscopy 

done on each batch, it appears that the batch with the lower working range had free sulfur, leading to a lower 

crystallization temperature; work has been done to improve the purity and quality of the raw materials prior to 

melting. The team is testing different lithium silicates as dopants in this system. 

Table 1. Chemical composition and naming scheme of various mixed oxy-sulfide nitride glasses. 

Sample ID Compositional Formula 

ISU-5 0.60Li2S + 0.40SiS2 + 0.1LiPO3 

ISU-6 0.58Li2S + 0.315SiS2 + 0.105LiPO3 

ISU-7(x) 0.58Li2S + 0.315 SiS2 + 0.105 [(1-x) Li0.67PO2.87 + xLiPO2.83N0.314] 

ISU-8(x, y) yLi 2S + 0.75(1-y)SiS2 + 0.25(1-y)LiP1-xAl xO3-x 

GSE-1 yLi 2S + (1-y)[(1-x)SiS2 + xLiPO3] 

ISU-9(z) 0.58Li2S + 0.315SiS2 + 0.105[(1-z)LiPO3 + zLi 2SiO3] 

Efforts have been made to further understand the atomic level structures of one of the teamôs more promising 

MOSN GSEs, ISU-7. In particular, the various previously mentioned analytical spectroscopy techniques have 

been useful in identifying many of the chemical bonds in these glasses and other important structural 

information; however, they have been unable to detect nitrogen in the glass. As a result, the team has shifted to 
using techniques that are more sensitive to the elemental composition of these materials. Thus, X-ray 

photoelectron spectroscopy (XPS) was used to identify the elemental makeup in these MOSN MGF GSEs. The 

XPS spectra were collected for the ISU-7 series of glasses (Table 1) for x = 0, 0.1, and 0.2, and are given in 
Figure 2a. It can be noted in Figure 2 that not only can a nitrogen signal be easily detected for these glasses, the 

team can also determine from the chemical shift of the nitrogen 1s peak that nitrogen is present in two structural 

bonding configurations. One arrangement is tri-coordinated nitrogen (often referred to as NT), and the other is 
di-coordinated nitrogen (often referred to as ND). An example of these two types of nitrogen species is shown 

in Figure 2b. The presence of nitrogen is within expectations, and it is assuring that these GSEs do indeed 

contain nitrogen. However, it is significant to note that when carefully analyzing the XPS data, the presence of 

nitrogen can be seen in x = 0 where there is no LiPON incorporated into the sample. Nominally, of course, this 
sample should not contain any nitrogen. Given that is does, the team conducted experiments to determine the 

origin of the adventitious nitrogen in the nominally and supposedly nitrogen-free x = 0 GSE. 
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Figure 2. (a) X-ray photoelectron spectra of ISU-7 {0.58Li2S + 0.32SiS2 + 0.1[(1-x)Li0.67PO2.87 + xLiPO2.83N0.314]}  
x = 0, 0.1, 0.2 with tri-coordinated (NT) and di-coordinated (ND) nitrogen modes present. (b) Examples of  
NT and ND nitrogen in the glassy solid electrolytes. 

XPS was performed on the raw material Li0.67PO2.87 and, as seen in Figure 3a, both NT and ND are present. 

This material is synthesized outside of the glovebox using lithium carbonate and ammonium phosphate dibasic, 

(NH4)2HPO4. The byproducts of this reaction are water, oxygen, and ammonia, and it appears that the ammonia 
byproduct reincorporates itself into the Li 0.67PO2.87, similar to how the teamôs lab uses ammonolysis to 

synthesize LiPON. To test this hypothesis, Li 0.67PO2.87 was then synthesized inside of the glovebox using pure 

and nitrogen-free Li2O and P2O5. XPS was performed to determine if nitrogen was present in this glass. As 

expected, Figure 3b shows no substantial nitrogen signal in this material; thus, it was found that the synthesis 
of Li 0.67PO2.87 outside the glovebox using nitrogen-bearing starting material, (NH4)2HPO4, leads to incorporation 

of nitrogen into the starting material, which in turn leads to the presence of nitrogen in these GSEs. 

The team then remade the ISU-7 series of GSEs using the Li 0.67PO2.87 that was synthesized inside the glovebox 

without nitrogen precursors. After remaking ISU-7 with the new nitrogen-free Li 0.67PO2.87, XPS was conducted 
on this new series of ISU-7 (x = 0, 0.1, 0.2) GSEs; the spectra are given in Figure 3. As can be seen and as 

expected, there is no nitrogen present in the x = 0 spectra and for x = 0.1 and 0.2, NT and ND are present. This 

is promising information, as this can provide insight into the impact that nitrogen incorporation has on 

GSE properties. Future studies will aim to use XPS to characterize the GSE structure to compare the difference 

between the starting material made inside the glovebox versus the material made outside the glovebox. 

  

(a) (b) 
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Figure 3. (a) X-ray photoelectron spectra (XPS) of Li0.67PO2.87 made outside the glovebox and inside the 
glovebox. (b) XPS spectra of ISU-7 (x = 0, 0.1, 0.2) with the new Li0.67PO2.87. Tri-coordinated nitrogen (NT) and 
di-coordinated nitrogen (ND) signal can only be seen in x = 0.1, 0.2, while x = 0 remains clear of any 
nitrogen signal. 

Work has also been done to further explore the GSE-1 series. In the previous report, Fourier transformation 

infrared (FTIR) spectroscopy data were gathered for GSE-1, y = 0.58, x = 0 to 1. To further expand the study 

of these GSEs, the team also examined y = 0.56 and y = 0.60 glasses. Figure 4a-c shows the FTIR spectra of 

the x = 0, 0.2, 0.5, 0.8, one from each GSE-1, respectively, with y = 0.60, 0.58, and 0.56. It can be seen that 
each spectrum is rather similar. However, in comparison to the synthesis of these materials, it was found that 

for y = 0.56 and y = 0.6 GSEs, they readily crystallized at lower x-values around x = 0.6. This means that these 

GSEs will rather crystallize when more LiPO3 is added to them, while y = 0.58 will not crystallize until x = 0.7. 
This information can assist in understanding the tunability of these GSEs. Future work will be conducted to 

incorporate nitrogen and determine the impact it can have on these materials. 

To further characterize the crystallization and viscosity behavior of the projectôs glasses, differential scanning 

calorimetry (DSC) experiments were performed and analyzed to determine the crystallization temperature and 
the viscosity behavior through the MauroïYueïEllisonïGuptaïAllan model (MYEGA) model. As such, the 

team can now predict the viscosity behavior of other glasses at varying temperatures, including the ISU-9,  

z = 1.0 glass. Several samples of each series were run, and linear regression was utilized to determine the 

fragility index, m, along with an appropriate 95% confidence interval of the viscosity, with previously reported 

glass systems being retested to confirm results. These new viscosity curves are plotted in Figure 5. 

  

(b) (a) 
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Figure 4. Fourier Transformation Infrared (FTIR) spectra of yLi2S + (1-y)[xSiS2 + (1-x)LiPO3] series ranging from 0.0 Ò x Ò 1.0 with modes 
identified to respective bonds. For (a) y = 0.6, (b) y = 0.58, and (c) y = 0.56, these spectra appear similar; however, there are reductions in 
intensity in select modes suggesting that there is a change in chemistry. 

(c) 

(b) (a) 
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Figure 5. Plot showing the viscosity curves of various studied glass from the MYEGA model and 
their crystallization at 1°C/min heating rate. Shaded regions indicate a 95% confidence interval 
for the fragility parameter. 

 

Task 2. Develop Micro-Sheet Glass Ribbon Processing Facility for GSEs 

Continue to Develop and Optimize the GSE Micro-Sheet Glass Ribbon Processing Facility 

Optimization efforts continued for the Micro-Sheet Glass Ribbon Processing Facility to improve ribbon 

drawing capabilities. Lithium metaphosphate (LiPO3) film was produced in large quantities for testing cathode 

application techniques. While working with the LiPO3, several tests were conducted. The drawing process was 

stopped, allowing the furnace to cool to room temperature, then restarted, with no breakage or loss of material. 
Several collection techniques for the finished film were tested, using a hot wire knife for clean collection of the 

LiPO3 film, or for continuous removal of the edge material. Once the edge material was removed, the thin, 

flexible ribbon was rolled around a tube. Unfortunately, this was unsuccessful, with the LiPO3 film breaking 

multiple times. 

Additional work on improving surface quality of drawn thin film was conducted as part of a concurrent sodium 

GSE project. The thin glass ribbon produced by the drawing process is sensitive to moisture, and a pristine 

surface is necessary for optimal interfacial behavior when fabricating cells. Once pieces of film are collected, 
they are transferred to a separate glovebox, leading to some surface contamination. To prevent this, a new 

transfer container was designed that allows for a better seal and flushing of inert gas from nitrogen to argon. 

The equipment and procedures developed for these sodium GSE films will also be applied to lithium GSE films.  
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Task 3. Develop Processing Conditions Micro-Sheet Ribbons of MOSN MGF GSEs  

Complete Optimization of Draw Conditions for Optimized MOS MGF GSEs < 50 ɛm 

Work has started to produce ISU-6 glass in numerous small, high-quality batches, which can then be combined 

to form a large ~ 200 g preform. Previous large preforms made by melting and casting all of the ~ 200 g of 

glass from raw materials in a single melt and have experienced crystallization during the drawing process. These 

attempts were produced and melted as one large batch, which resulted in lower quality glass; any inhomogeneity 
in the preform may have caused heterogenous crystallization. Small-batch processing has been found to result 

in higher quality glass, for example, by preventing low-temperature heterogenous crystallization and allowing 

for drawing. Several batches have been completed with the intent to fully draw high-quality MOS GSE thin 
films next quarter. Prior to the small batches being combined and remelted into one homogenous melt, 

DSC experiments will be run to confirm homogeneity of the glass batches and ensure that each batch is on 

chemistry and high quality. Analysis of the glass transition and crystallization temperatures of each batch 

compared to expected values from previously studied small batches will enable this. Further testing through 
Raman spectroscopy may also be conducted to ensure that the short-range order structures of each batch are as 

expected and that no major impurities are present. Through the teamôs viscosity and crystallization studies of 

small batches of the various GSE compositions, current analysis indicates that a high-quality preform of ISU-6 

will be able to be drawn into a thin film. 

Task 4. Fabricate and Test ASSLB GSEs in Large Area Planar Formats 

Complete Testing of Optimized MOSN MGF GSE in Intermediate Cell Format ASSLBs 

Complete Testing of Optimized MOSN MGF GSE in Large-Cell Format ASSLBs 

Cyclic voltammetry (CV) of the ISU-9, z = 1.0 composition was conducted in small-cell format to determine 

the electrochemical stability window of the GSE. The voltammogram is shown in Figure 6. Similar to 
previously reported data, the ISU-9 composition shows good stability in the range from 0-5 V versus Li/Li+. 

Minor peaks are present from 0.8-2.2 V, which appear to be from residual sulfur from the SiS2. These peaks 

appear smaller in this graph than for previously reported glass series, indicating that the ISU-9 series may be 

slightly more stable than previously reported compositions. 
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Figure 6. Cyclic voltammogram for the ISU-9, z = 1.0 
composition showing overall stable behavior with minor 
oxidative peaks around 0.8-2.2 V. 
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To assess performance of the GSEs in a variety of full-cell formats, coin cells were assembled using indium 

foil as the anode, bulk ISU-6 as the GSE, and LiFePO4-coated aluminum foil as the cathode material. A solvate 

ionic liquid (IL) consisting of a triglyme solvent and lithium trifluoromethanesulfonimide (LiTFSI) salt was 

placed at the cathode-GSE interface to reduce interfacial resistance. These cells were tested using CV and 
galvanostatic cycling. As seen in Figure 7a, CV of the full cells show two clear peaks correlating to the oxidation 

and reduction reactions of the In-Li system. There is a relatively large overpotential present in this cell that may 

be attributed to polarization in the relatively thick glass disk (~ 1 mm). It is believed that this polarization will 
decrease when utilizing a thin-film MOS GSE of significantly, that is, orders of magnitude, smaller overall 

impedance. No other undesired redox reactions were observed in the voltammogram. Galvanostatic cycling of 

the full cells revealed stable cycling up to 55 cycles at a charge rate of C / 20, shown in Figure 7b. Cycling also 
shows relatively high-capacity retention with small capacity changes between cycles believed to be from 

moderate temperature changes in the lab. Testing in a more temperature-controlled location would lead to more 

consistent results, and work is being done to better control the environment where cells are tested. 

 
Figure 7. (a) Cyclic voltammogram showing stable redox behavior of an In | ISU-6 | LiFePO4 full 
cell with a small amount of ionic liquid (IL) on the cathode. (b) Cycling behavior of an In | ISU-6 
| LiFePO4 full cell with a small amount of IL on the cathode showing stable cycling with low 
capacity fade. 
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